Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats.
نویسندگان
چکیده
Hyperinsulinemia is associated with hypertension. Dysregulation of renal distal tubule sodium reabsorption may play a role. We evaluated the regulation of the epithelial sodium channel (ENaC) and the thiazide-sensitive Na-Cl cotransporter (NCC) during chronic hyperinsulinemia in rats and correlated these changes to blood pressure as determined by radiotelemetry. Male Sprague-Dawley rats ( approximately 270 g) underwent one of the following three treatments for 4 wk (n = 6/group): 1) control; 2) insulin-infused plus 20% dextrose in drinking water; or 3) glucose water-drinking (20% dextrose in water). Mean arterial pressures were increased by insulin and glucose (mmHg at 3 wk): 98 +/- 1 (control), 107 +/- 2 (insulin), and 109 +/- 3 (glucose), P < 0.01. Insulin (but not glucose) increased natriuretic response to benzamil (ENaC inhibitor) and hydrochlorothiazide (NCC inhibitor) on average by 125 and 60%, respectively, relative to control rats, suggesting increased activity of these reabsorptive pathways. Neither insulin nor glucose affected the renal protein abundances of NCC or the ENaC subunits (alpha, beta, and gamma) in kidney cortex, outer medulla, or inner medulla in a major way, as determined by immunoblotting. However, insulin and to some extent glucose increased apical localization of these subunits in cortical collecting duct principal cells, as determined by immunoperoxidase labeling. In addition, insulin decreased cortical "with no lysine" kinase (WNK4) abundance (by 16% relative to control), which may have increased NCC activity. Overall, insulin infusion increased blood pressure, and NCC and ENaC activity in rats. Increased apical targeting of ENaC and decreased WNK4 expression may be involved.
منابع مشابه
Induction of renal 20-hydroxyeicosatetraenoic acid by clofibrate attenuates high-fat diet-induced hypertension in rats.
This study compared renal hemodynamics, the expression of CYP4A isoforms [the enzymes for 20-hydroxyeicosatetraenoic acid (20-HETE) production], and tubular sodium transporters in male rats fed a high-fat (HF) or control diet for 10 weeks. We also studied the effect of treatment with clofibrate, a CYP4A inducer, on sodium retention and renal function and on CYP4A expression in HF rats. HF rats ...
متن کاملVasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension?
Excessive sodium reabsorption by the kidney has long been known to participate in the pathogenesis of some forms of hypertension. In the kidney, the final control of NaCl reabsorption takes place in the distal nephron through the amiloride-sensitive epithelial sodium channel (ENaC). Liddle's syndrome, an inherited form of hypertension due to gain-of-function mutations in the genes coding for EN...
متن کاملAltered Regulation of Renal Sodium Transporters in Salt-Sensitive Hypertensive Rats Induced by Uninephrectomy
Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Fo...
متن کاملInsulin's impact on renal sodium transport and blood pressure in health, obesity, and diabetes.
Insulin has been shown to have antinatriuretic actions in humans and animal models. Moreover, endogenous hyperinsulinemia and insulin infusion have been correlated to increased blood pressure in some models. In this review, we present the current state of understanding with regard to the regulation of the major renal sodium transporters by insulin in the kidney. Several groups, using primarily ...
متن کاملThe role of the epithelial Na+ channel (ENaC) in high AVP but low aldosterone states
Due to the abundance of seminal discoveries establishing a strong causal relation between changes in aldosterone signaling, the activity of the epithelial Na(+) channel (ENaC) and blood pressure, the role of ENaC in health and disease is understood almost exclusively through the concept that this channel functions (in the distal nephron) as a key end-effector controlling renal sodium excretion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 290 5 شماره
صفحات -
تاریخ انتشار 2006